November 5, 2019
By Mathias Golombek, CTO, Exasol
The business benefits of IoT are clear, and nearly infinite. By extracting real-time data from connected endpoints, IoT enables organizations to make more informed and intelligent decisions that can directly impact their bottom line. Too often, though, businesses get swept up by the promise of IoT and focus their resources on gathering IoT-related data just for data’s sake. What makes the IoT so impactful, though, isn’t necessarily all of the data it produces. Rather, it’s the insights that can be derived from that data that’s so valuable.
When troves of real-time data gathered by IoT devices is funneled to a slow analytics platform — as is the case for many organizations — the entire value prop of IoT begins to crumble. Certainly, some businesses may be able to eventually identify some patterns across their incoming IoT data via a slow analytics platform, or even through manual data science efforts. However, today’s issues aren’t necessarily going to be the same as yesterday’s or tomorrow’s, so if organizations want to extract real value from IoT, they need to leverage lightning-fast in-memory analytics platforms.
In-memory refers to using a computer’s random access memory (RAM) as opposed to its hard disk drives or flash memory storage. The technology runs magnitudes faster than a hard disk drive, making it the ideal solution for analyzing large IoT data volumes in real-time. When applied to analytic databases, in-memory capabilities allow for an unlimited number of users to interact with data, while also ensuring the system doesn’t grind to a halt when the most basic of analytics questions are queried.
Still, searching for a new in-memory analytic database system (or even types of databases in general) can be an overwhelming process. A crucial first step is identifying the business applications that need to benefit from performance in order to provide a better service, better products and/or optimize operations. Next, organizations should clearly specify the criteria needed in a database and define a complete set of benchmark requirements. From there, it’s best to establish a solid team from different business units who will conduct the research and buying processes.
Once clear goals and cross-company stakeholders have been identified, organizations should consider the following five factors when researching in-memory analytic databases:
The whole point of IoT is to be able to make quick, informed decisions based on real-time insights. Organizations can’t afford to be waiting on queries if they want to realize the value of IoT and stay ahead of savvy competitors. Leverage in-memory analytic databases to simplify your existing IT infrastructure and process larger IoT data workloads with far fewer hardware resources. By offloading historically troublesome applications and processes to in-memory systems, organizations can avoid expensive upgrades for legacy systems, traditional databases and hardware appliances — all while maintaining a constant focus on running complex analyses in near real-time to find actionable value within IoT data.
Tune in to hear from Chris Brown, Vice President of Sales at CADDi, a leading manufacturing solution provider. We delve into Chris’ role of expanding the reach of CADDi Drawer which uses advanced AI to centralize and analyze essential production data to help manufacturers improve efficiency and quality.